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Abstract-The equations of motion of a spinning pre-twisted beam are formulated using Euler
beam theory and the assumed mode method, The equations of motion are then transformed to the
standard form of an eigen-value problem for determining the critical spinning speeds corresponding
to the divergence behavior of the spinning beam. The effects of pre-twist angle and aspect ratio of
the rectangular cross-section of the beam on its stability are investigated, Detailed numerical
simulations show that the unstable spinning speed zones for a pre-twisted beam of a given aspect
ratio of the cross-section do not become narrower with increased pre-twist angle, The main reason
is that for a pre-twisted beam, the critical spinning speeds corresponding to divergence behaviors
are no longer the dividing points for separating the speed zones into stable and unstable regions,
This type of stability behavior of a pre-twisted beam is different from the stability behavior of a
spinning beam without any pre-twisting, Such a spinning beam without pre-twisting is found to
have distinct regions of stable and unstable spinning speed zones separated by critical spinning
speeds,

I. INTRODUCTION

The dynamic behaviors of spinning beams have been studied extensively in relation to the
vibration of rotating shafts, drills, end-mills, boring bars and satellite booms. Likins et al.
(1973) and Bauer (1980) investigated an Euler beam attached to a rigid base spinning with
a constant angular speed. Laurenson (1976) analysed the behavior of a spinning beam
having different flexural rigidities in the two principal directions of the cross-section. Leung
and Fung (1988) analysed the vibration of spinning Euler beams using the finite element
method. Filipich et al. (1987) investigated the vibration of a spinning beam with uniform
cross-section having only one axis of symmetry. Kane et al. (1987) investigated a
Timoshenko beam built into a rigid base undergoing general three-dimensional motions.
Kammer and Schlack (1987) analysed an Euler beam with a constant spin rate superimposed
by small periodic perturbations. The vibrations of pre-twisted beams under axial com
pressive loads with elastic constraints were investigated by Chen and Liao (1991). The
major part of their work was on the determination of natural frequencies for a beam with
various combinations of pre-twist angles, spinning speeds, aspect ratio of the cross-section
and axial compressive loads. Only the first critical speed zone was presented for a pre
twisted beam with a prescribed aspect ratio of the cross-section. Moreover, they reported
that the first critical spinning speed was found to increase for larger pre-twist angle. The
first unstable spinning speed zone was also reported to be narrower for a beam with larger
pre-twist angle. The other studies related to pre-twisted beams [for example, Carnegie and
Thomas (1972); Celep (1985)] were for non-spinning pre-twisted beams.

It is well known that the equations of motion of a spinning Euler beam with circular
cross-section, when derived in an inertial coordinate system, are identical to the equations
of motion of a non-spinning Euler beam [for example, Han and Zu (1992); Katz et al.
(1988)]. This finding is important as it implies that the stability behavior of a spinning
beam with circular cross-section is independent of the spinning speed. One can conclude
further that such a spinning beam will always be stable irrespective of the spinning speed
and any prescribed spinning motion. Such a conclusion has also been experimentally and
theoretically verified for a spinning Euler beam with the same flexural rigidities in the two
principal directions of the cross-section (Lim and Ong, 1992). A spinning beam with equal
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Fig. I. A spinning pre-twisted beam.

flexural rigidities in the two principal directions of the cross-section was also reported to
be always stable by Kammer and Schlack (1987). When the equations of motion of such a
spinning beam are derived using a body-fixed coordinate system, the spinning speed of the
beam will appear in the equations of motion. Critical speeds in terms of the divergence
behavior of the beam can be found. It is important to note that such critical speeds refer
only to the divergence behavior, which corresponds to zero real and imaginary parts of the
corresponding eigen-values, and do not imply unstable behaviors for the beam, whereas
for unstable behaviors, the real part of the corresponding eigen-values will have to be
positive. Therefore, the findings obtained from formulations based on body-fixed coor
dinate systems do not contradict the conclusion drawn from formulations based on inertial
coordinate systems. Consequently, an inertial coordinate system is a simpler and better
choice for describing the motion of a spinning beam with equal flexural rigidities in the two
principal directions of the cross-section. However, for a beam with different flexural rigid
ities in the two principal directions of the cross-section, a body-fixed coordinate system has
to be used to derive the corresponding equations of motion.

In the present study, the equations of motion in matrix form for a spinning pre-twisted
beam are formulated using Hamilton's principle and the assumed mode method. The
equations of motion are then transformed to the standard form of an eigen-value problem
for studying the influence of the pre-twist and aspect ratio of the cross-section on the
divergence-type instability of the spinning beam. The stability of a beam with no pre
twisting will be analysed first for comparison with the reported results. The stability of a
pre-twisted beam is then analysed in detail based on numerical simulations. It will be shown
in the present paper that the stability behavior of a spinning pre-twisted beam is different
from the stability behavior of a spinning beam without any pre-twisting. A major finding
is that the critical spinning speeds corresponding to divergence behaviors of a pre-twisted
beam are no longer the dividing points for separating the speed zones into stable and
unstable regions.

2 THEORY AND FORMULATIONS

The present formulation for the kinetic energy and potential energy follows closely the
work presented by Chen and Liao (1991). The beam shown in Fig. 1, is a pre-twisted beam
of uniform cross-section with overall pre-twist angle f3 and length L, rotating with a constant
angular speed n about its longitudinal axis. A body-fixed coordinate system (x, y, z) is
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moving with the spinning beam in an inertial coordinate system (X, Y, Z). A third coor
dinate system (x', y', z') is defined to be a local coordinate system along the principal axes
of the beam for a particular cross-section. The three Z, z, and z' axes are coincident at all
times. The pre-twist angle is assumed to be varying linearly along the beam. The deflections
are assumed to be small for the deformation to be governed by Euler beam theory. There
is no coupling between torsional and transverse vibrations as the cross-section is rectangular
with coincident centroid and shear center.

The deformation of the beam is described by the transverse deflections u(z, t), and v(z,
t) in the x and y directions of the beam. The deflections are coupled due to the spinning
motion and the fact that the principal axes, which change along the beam, are no longer
coincident with the (x, y, z) axes. The kinetic and potential energy are given by (Chen and
Liao, 1991)

(I)

(2)

where m is the mass of the beam per unit length, E is the Young's modulus and Ix· and Iy '

are the moments of inertia about the x' and y' principal axes in the local coordinate system
(x', y', z').

For simplicity in the subsequent derivations and computations, the following dimen
sionless quantities are introduced:
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(3)

(4)

(5)

(6)

Using the assumed mode method, the dimensionless quantities uand vcan be expressed
as

(7)

(8)

where cP, are spatial functions that satisfy the boundary conditions at the two ends of the
beam. For a beam simply supported at both ends, the assumed functions are
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(9)

The assumed forms ofaand iJ enable the kinetic energy and the potential energy to be
expressed in matrix form as follows:

where

(12)

(13)

(14)

(15)

The matrix 0 is equal to the identity matrix due to the orthogonality of the assumed
beam functions. The vectors p, pand qare n x I column vectors consisting of Pi' Pi' lji and
<;;, respectively. The notation (It) denotes second partial derivative with respect to~.

The resulting dimensionless equations of motion are

(16)

(17)

The two matrix equations are coupled due to the spinning motion and the pre-twisting
of the beam. The equations of motion can be presented in the matrix form

Ia+Ba+Ca 0,

where I is the identity matrix, 0 is the zero matrix and

[
0 -2

0
01J

B= 201

Equation (18) can be cast in the form

b=Gb

with

(18)

(19)

(20)

(21)
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b = [:]

= [-B -CJG I O'

For a non-trivial solution, one has the characteristic equation

det IG-OI = o.

The quantities ( are the complex eigen-values which can be expressed as

(= p±iw,
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(22)

(23)

(24)

(25)

where i is the imaginary unit, p is the dimensionless damping and w is the oscillatory
dimensionless eigen-frequencies. The condition of p = w 0 gives the divergence limit. If
p is positive, the motion will be unstable.

For ( = 0, the divergence equation given by eqn (24) can be reduced to

detlCl = o. (26)

For a given pre-twist angle f3 and cross-section K, the square of the critical dimensionless
spinning speeds of the beam can be found from the eigen-values of the following eigen
value problem from eqn (26) :

where

detlA-ft2II = 0, (27)

(28)

The square of the critical speeds are just the eigen-values of the matrix A . The eigen-values
can be computed easily using any commercial computer software for matrix computations.

3. RESULTS AND SIMULATIONS

The present formulation enables the critical speeds of a pre-twisted spinning beam to
be determined conveniently from eqn (27) using any commercial software package (for
example, PCMATLAB) for matrix computations. The stability of the spinning beam can
also be determined easily by examining the sign of the real parts of the eigen-values of the
matrix Gin eqn (24). The case of a spinning beam with no pre-twisting is first examined
for a beam simply supported at both ends. Numerical results for other boundary conditions
can be easily generated using the appropriate assumed functions.

For a beam with no pre-twisting, the pre-twist angle f3 is equal to zero. Consequently,
the matrix K3 is equal to a zero matrix. The eigen-values of the matrix A are just the eigen
values of matrix Kt and 1\2' Moreover, the matrix it is independent of K from eqn (13).
The eigen-values for K1 are therefore equal to n4, (2n)4 ... (nn)4 for simply supported beam.
The matrix 1\2 is also equal to K1when K is equal to one. The dimensionless critical speeds
11 for a simply supported spinning beam with equal flexural rigidities in the two principal
directions (K = I) are therefore equal to n2, (2nf ... (nn)2. When K decreases, the eigen
values of K2 are found to be on the same decreasing trend. These changes in the critical

SAS 31: 18·F
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Fig. 2. Critical non-dimensional spinning speeds for a non pre-twisted beam.

speeds due to Kz are indicated by the curved solid lines in Fig. 2. As K. is independent of
K, the critical speeds corresponding to K) remain unchanged and are indicated by vertical
straight lines shown in Fig. 2. The shaded regions, indicated in Fig. 2, are found to be
corresponding to unstable behaviors with positive real part for the corresponding eigen
values. Only the first 10 unstable regions are indicated in Fig. 2. It can be seen that for a
spinning beam with a prescribed shape for the cross-section, the motion is unstable when
the spinning speed of the beam lies within certain intervals which are bounded by the critical
speeds. This finding is in complete agreement with the reported finding by Ariaratnam
(1965). It can also be seen from Fig. 2 that the stable regions become smaller and smaller
with increased divergence of the flexural rigidities for the two principal directions of the
cross-section. Moreover, for a spinning beam with a large difference in the flexural rigidities
in the two principal directions of the cross-section (i.e. the upper portion of Fig. 2), there
exists a critical speed above which the motion is always unstable.

For a pre-twisted spinning beam with non-zero {J, the matrix K3 is no longer a zero
matrix. The critical speeds corresponding to divergence behaviors, indicated by solid curved
lines, are shown in Figs 3-7 for {J = lOG, 45°, 90°, 1800 and 360°. The shaded regions,
bounded by the two curves originating from the same point on the horizontal axis with
K = 1, are found to correspond to unstable behaviors with positive real parts for the
corresponding eigen-values. These regions are found to be smaller for a spinning beam with
larger pre-twist angles. Moreover, for K = 1, the critical speeds of the spinning beam are
found to be independent of {J, which can be easily verified from the definitions of K. and
Kz. It is very tempting to conclude that the non-shaded regions will be stable as the lines
corresponding to divergence behaviors in Fig. 2 for a spinning beam without pre-twisting
are found to be the dividing lines for stable and unstable regions. However, a detailed
checking of the sign of the eigen-values of these non-shaded regions show otherwise. For
example, for the case of a beam with pre-twist angle of 90° shown in Fig. 5, some of the
eigen-values are found to possess large positive real parts for K smaller than 0.6, excluding
some distinct values of K that correspond to divergence behaviors, and also for a tiny region
of K between 0.89 and 0.91 when the dimensionless spinning speed Q is 250. The upper
portions of the non-shaded regions, corresponding to a spinning beam with large differences
in the flexural rigidities in the two principal directions of the cross-section, are found to be
more likely the unstable regions. The lower portions, on the other hand, are found to be
more likely the stable regions. For these pre-twisted spinning beams, the critical spinning
speeds corresponding to divergence behaviors are no longer the dividing points for sepa-
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Fig. 3. Critical non-dimensional spinning speeds for a pre-twisted beam with p = 10°,
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rating the speed zones into stable and unstable regions. This is not entirely surprising as
there is no reason as to why the sign of the real parts of the eigen-values should be different
on the two sides of the line corresponding to divergence behaviors with zero eigen-values.
Moreover, if one examines Figs 3-7 closely, one can find that the narrowest gaps between
the shaded regions decrease with smaller pre-twist angle for the spinning beam. When the
pre-twist angle is close to zero, the solid lines corresponding to divergence behaviors will
approach the corresponding solid lines for the case of a non pre-twisted beam shown in
Fig. 2. For example, the solid lines for the divergence behaviors shown in Fig. 3 for p= 10°
are very close to those lines shown in Fig. 2 especially for small and moderate spinning
speeds. For the upper portions of the non-shaded regions, it is not likely for a non-pre
twisted spinning beam to change from unstable to stable behavior with a small amount of
pre-twisting.
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Fig. 4. Critical non-dimensional spinning speeds for a pre-twisted beam with f3 = 45°.
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Fig. 5. Critial non-dimensional spinning speeds for a pre-twisted beam with f3 = 90'.
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4. CONCLUSION

The equations of motion in matrix form are formulated for the dynamic behavior of
a spinning pre-twisted beam based on Hamilton's principle and the assumed mode method.
The equations of motion are then transformed to the standard form of an eigenvalue
problem for determining the critical dimensionless spinning speeds corresponding to the
divergence-type instability of the beam. Results of numerical simulations are presented for
various combinations of pre-twist angle and prescribed cross-section of the beam. An
advantage of the present formulation is that the critical speeds and the stability for a
spinning beam can be easily determined using any commercial package for matrix compu
tation. The numerical results for non pre-twisted spinning beam are found to be in agree
ment with the reported works. For pre-twisted spinning beams, the stability behavior is
found to be drastically different from that of a spinning beam without any pre-twisting. A

1.0

0.9

0.8

0.7

0.6

It
I 0.5

0.4

0.3

0.2

0.1

0 100 200 300 400 500 600 700 800 900 1000

n
Fig. 6. Critical non-dimensional spinning speeds for a pre-twisted beam with f3 = 180.
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Fig. 7. Critical non-dimensional spinning speeds for a pre-twisted beam with P= 360°.
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major finding is that the critical spinning speeds corresponding to divergence behaviors of
a pre-twisted beam are no longer the dividing points for separating the speed zones into
stable and unstable regions.
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